A 100 year Search for the “Ideal” Mass Transfer Device

Christoph Ender and Izak Nieuwoudt
Koch-Glitsch

AIChE Spring 2013, San Antonio
April 29, 2013
Ancient Times: Simple Distillation

- **Essential Oils**
 - 1st century (Alexandria)

- **Ethanol**
 - 15th century (Europe)

- **Sulfur**
 - 16th century

Main Challenges:
- Temperature control
 - No instruments to measure
 - Adjusted through changes in the fuel source
- Condensation
 - Air
 - Water
 - Starting in 15th century
- Glass manufacturing techniques define apparatus size limitation
Middle Ages: First Rectification

- **First multi-stage distillation**
 - Achieved in a series of evaporation and condensation steps.

- **Introduction of spiral heat exchangers**
 - Improved the condensation.
 - Raising designs lead to the first true rectification column.

- **First vacuum distillation**
 - 18th century (England)
The rectification column takes shape

- The rectification of Ethanol influenced development in the 19th century.
 - In France, Adams arranged a horizontal rectification column.
 - With the introduction of the bubble cap tray by Cellier-Blumenthal in 1815 and the two column apparatus with sieve tray by Coffey in 1832, columns were finally built in the vertical.
Koch-Glitsch contributed with major developments in the 20th and 21st century

- **Fritz W. Glitsch**
 - Founded in 1913 as a fabrication and machine shop.
 - 1930s specialized in columns and Mass Transfer equipment.
 - Soon started to develop its own technology.

- **Koch Engineering**
 - Founded in 1945
 - Had its own tray design
 - Acquired Glitsch in 1997 to form Koch-Glitsch, a leader in Mass Transfer technology.
Crossflow Trays

- Most widely used Mass Transfer devices.
- Improved orifices and downcomer designs
 - Enlarged bubbling area and MINIVALVE™ technology lead to increased capacity
 - Longer flow path and uniform residence time result in enhanced separation efficiency.
- A wide variety of models and styles make it the most versatile device available today.
Multiple Downcomer Trays

- Increased weir lengths lead to superior liquid handling capacity.
- Short flow path length affects the tray efficiency.
 - Multi downcomer trays achieve the high capacity at the cost of relatively low tray efficiency. The low tray spacing, allows a higher tray count in a given column height.
 - MD and ECMD tray
 - Hi-Fi tray
Counter and Concurrent Flow Trays

Counter flow Trays
- Vapor and liquid counter flow at low velocity.
- Fouling resistant design

Centrifugal Trays
- Vapor and liquid concurrent flow at high velocity.
- Liquid separated by centrifugal force.
 - Mitsui MH tray – 1993
 - Consep tray - 1995
 - Gesip tray – 1999

Shed deck
Disc and Donut tray
Ripple Tray™
ULTRA-FRAC™ tray - 1992
Early Random Packing in Spherical Shapes

- Simple early development
 - Filled void space in the column
 - Increased the liquid/vapor contact area

- Pumice Stones – 1850s
- Glass balls – 1820s
- Ceramic Balls – 1880s
- Metal Balls – 1900s
- Berl Saddle – 1880s
Cylindrical Rings

- An effort to
 - Reduce pressure drop and
 - Increase mass transfer contact area

- Wide variety of styles
 - Louvers with different shapes and sizes
 - Aspect ratio changes

Raschig Rings - 1914

Pall Rings - 1944

HY-PAK™ random packing - 1966

CASCADE MINI-RINGS™ random packing - 1971
Metallic offspring of ceramic Berl saddle and INTALOX™ saddle brought further improvements to capacity and efficiency.
Structured Packing

- Lowest Δp per theoretical stage.
- Industrial breakthrough with introduction of sheet metal packing.

- Kloss-type packing spiral wound mesh - 1960
- Wire gauze packing - 1964
- FLEXIPAC® HC™ structured packing - 1997
- FLEXIPAC® and METALPAK® and structured packing - 1977
Fouling Resistant Packing

- No horizontal surfaces; open structure
 - Do not allow solids to settle
 - Reduce the formation of coke on the packing surface

GLITSCH GRID™ severe service grid - 1982

FLEXIGRID™ severe service grid - 1982

PROFLUX™ severe service grid - 2009
Conclusions

- There is no single ideal mass transfer device for all applications.

- There is, however, an ideal device for every application.

- Positive past experience often leads to selection of proven design and equipment over the latest and greatest technology.
Equipment Selection Criteria

<table>
<thead>
<tr>
<th></th>
<th>Trays</th>
<th>Grid Packing</th>
<th>Random Packing</th>
<th>Structured Packing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure drop</td>
<td>High</td>
<td>Low</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td>Operating range</td>
<td>High Liquid</td>
<td>Low Liquid</td>
<td>Low Liquid</td>
<td>Low Liquid High Vapor</td>
</tr>
<tr>
<td></td>
<td>Low Vapor*</td>
<td>High Vapor</td>
<td>High Vapor</td>
<td></td>
</tr>
<tr>
<td>Liquid residence time</td>
<td>High</td>
<td>Low</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td>Liquid load</td>
<td>Low* to High</td>
<td>Low to High</td>
<td>Low to High</td>
<td>Low to Moderate</td>
</tr>
<tr>
<td>Foaming</td>
<td>No</td>
<td>Yes</td>
<td>Moderate</td>
<td>Yes</td>
</tr>
<tr>
<td>Fouling resistance</td>
<td>Yes*</td>
<td>Yes</td>
<td>Moderate</td>
<td>Limited</td>
</tr>
<tr>
<td>Upset resistance</td>
<td>Yes*</td>
<td>Yes</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Corrosion resistance</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Multiple feed locations</td>
<td>Easy to install</td>
<td>Expensive; requires column height</td>
<td>Expensive; requires column height</td>
<td>Expensive; requires column height</td>
</tr>
</tbody>
</table>

* Requires special features
21st Century: Moonshinners

- Still today, there are people applying simple distillation technology to separate Ethanol from Water *

*DO NOT TRY THIS AT HOME

* This presentation is for informational purposes only, Koch-Glitsch LP does not recommend or endorse the distillation of alcohol. Consult with an attorney and safety personnel prior to any related activity.
Thank you.

Questions?

TRADEMARKS
CASCADE MINI-RINGS, FLEXIGRID, FLEXIMAX, FLEXIPAC, FLEXITRAY, GLITSCH GRID, HY-PAK, IMTP, INTALOX, INTALOX PACKED TOWER SYSTEMS WITH PROCESS TOWER “L”, Koch-Glitsch “K” Koch-Glitsch, MINIVALVE, PROVALVE, SUPERFRAC, and ULTRA-FRAC are trademarks of Koch-Glitsch, LP and are registered in the US and various other countries. FLEXILOCK, HC, KG-TOWER, and KG-TOWER and Design are trademarks of Koch-Glitsch, LP and are registered in the US. BETA RING, INTALOX PACKED TOWER SYSTEMS, PROFLUX, and ULTRA are trademarks of Koch-Glitsch, LP.

PATENTS
FLEXILOCK™, SUPERFRAC™, and Enhanced Vapor Horn technologies are protected by patent in the US and various other countries, other patents pending. PROFLUX™ technology is protected by patent in the US; other patents pending. PROVALVE™ technology is protected by patent in the US and various other countries. IMTP™ technology is protected by patent in India. ULTRA-FRAC™ technology has patents pending. Available exclusively from Koch-Glitsch, FLEXIPAC® HC™ structured packing is protected by US Patent 5,632,934 and other patents worldwide assigned to Praxair Technology, Inc. Koch-Glitsch, LP is the exclusive worldwide licensee of Praxair Technology, Inc. for the manufacture and sale of this packing in all markets except for industrial gas separation.

LEGAL NOTICES
The Information in the presentation is not a guarantee of results to be achieved by any user and is not a statement of warranty, either express or implied. ALL EXPRESS AND IMPLIED WARRANTIES ARE EXPRESSLY DISCLAIMED, INCLUDING THOSE FOR MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Individual results may vary and Koch-Glitsch cannot anticipate nor control conditions of application. IN NO EVENT SHALL KOCH-GLITSCH, ITS AFFILIATES, OR ANY PARTY INVOLVED IN CREATING, PRODUCING, OR DELIVERING THIS PRESENTATION BE LIABLE FOR ANY LOSS, DAMAGE, CLAIM, FINE, PENALTY OR ANY OTHER CLAIM, INCLUDING BUT NOT LIMITED TO CLAIMS FOR CONSEQUENTIAL, SPECIAL, GENERAL, INCIDENTAL, DIRECT, INDIRECT, PUNITIVE, PERSONAL INJURY OR PROPERTY DAMAGES, INCLUDING WITHOUT LIMIT LOSS OF PROFITS, REVENUES, OR OTHER ECONOMIC LOSSES, ARISING OUT OF YOUR ACCESS, USE, OR INABILITY TO USE THIS PRESENTATION OR ANY ERRORS OR OMISSIONS IN THE CONTENT THEREOF.