2018 Public Report of Accounting Results for Koch-Glitsch Canada LP, Uxbridge

1. General Information								
Substance Information								
Substa	CAS #							
Chromium (and its compounds)		NA - 04						
Cobalt (and its compounds)		NA – 05						
Nickel (and its compounds)		NA – 11						
Particulate Matter <=2.5 micron	neters	NA – M10						
Particulate Matter <=10 microm	eters	NA – M09						
Facility Information								
Company Name	Koch-Glitsch Canada LP							
Facility Address	18 Dallas Street, Uxbridge, Ontario L9P 1C6							
Site Coordinates (main entrance of site)	650145 E, 4886270 N, Zone 17							
NPRI ID	7071							
MOE ID	N/A							
Number of Full-Time Employees in 2018	111							
2-Digit NAICS Code	33 – Manufacturing							
4-Digit NAICS Code	3329 – Other Fabricated Metal Product Manufacturing							
6-Digit NAICS Code	332999 – All Other Miscellar Manufacturing							

Facility Contact Information

Public Contact	Paul Brown	E-mail: paul.brown@kochps.com
	Manager Group Affairs	Address:
	Phone: 613-548-5320	455 Front Street
		Kingston, ON K7L 4Z6

2. Toxic Substance Accounting Summary

Substance Name	Used	Created	Contained In Product	Release to Air	Disposed / Recycled
Chromium (and its compounds)	10 to 100		10 to 100	0 to 1	/ 1 to 10
Cobalt (and its compounds)	10 to 100	0 to 1 kg	10 to 100	1 to 10 kg	10 to 100
Nickel (and its compounds)	10 to 100		10 to 100	0 to 1	/ 1 to 10
Particulate Matter <=2.5 micrometers		0 to 1		0 to 1	
Particulate Matter <=10 micrometers		0 to 1		0 to 1	

Facility-wide Amounts of Toxic Substances Reported for 2018:

NOTE: Units are expressed in tonnes, unless otherwise indicated. '--' indicates not applicable.

3. Quantification Comparison to Previous Year

3.1	Chromium (and its compo	ounds)

	Unit	2018	2017	Change (Unit)	Change (%)	Rationale for Change
Used	Tonnes	10 to 100	10 to 100	↓ 1 to 10	↓ 23%	Decrease due to decrease in use of materials containing Chromium.
Created		-				
Contained In Product	Tonnes	10 to 100	10 to 100	↓ 1 to 10	↓ 26%	Decrease due to decrease in use of materials containing Chromium.
Release to Air	Tonnes	0 to 1	0 to 1	↑ 0 to 1	↑ 0.9%	No significant change.
Release to Water						
On-site Disposal						
Transferred for Disposal						
Transferred for Recycling	Tonnes	1 to 10	1 to 10	↑ 1 to 10	↑ 4.8%	No significant change.

3.2 Cobalt (and its compounds)

	Unit	2018	2017	Change (Unit)	Change (%)	Rationale for Change
Used	kg	10 to 100	100 to 1,000	↓ 10 to 100	↓ 47%	Decrease due to decrease in use of materials containing Cobalt.
Created	kg	0 to 1	0 to 1	↑ 0 to 1	↑ 81%	Decrease due to decrease in use of materials containing

						Cobalt.
Contained In Product	kg	10 to 100	100 to 1,000	↓ 10 to 100	↓61%	Decrease due to decrease in use of materials containing Cobalt.
Release to Air	kg	1 to 10	1 to 10	↑ 0 to 1	↑ 2.1%	No significant change.
Release to Water						
On-site Disposal						
Transferred for Disposal						
Transferred for Recycling	kg	10 to 100	0 to 1	↑ 10 to 100	↑ 24755%	Increase in the amount of materials containing cobalt.

3.3 Nickel (and its compounds)

	Unit	2018	2017	Change (Unit)	Change (%)	Rationale for Change
Used	Tonnes	10 to 100	10 to 100	↓ 1 to 10	↓ 45%	Increase in use of materials containing nickel.
Created						
Contained In Product	Tonnes	0 to 10	10 to 100	↓ 1 to 10	↓ 49%	Increase in use of materials containing nickel.
Release to Air	Tonnes	0 to 1	0 to 1	↑ 0 to 1	↑ 1%	No significant change.
Release to Water						
On-site Disposal						
Transferred for Disposal						
Transferred for Recycling	Tonnes	1 to 10	1 to 10	↓ 1 to 10	↓ 16%	Decrease in recycling of materials containing Nickel.

3.4 Particulate Matter <=2.5 micrometers

	Unit	2018	2017	Change (Unit)	Change (%)	Rationale for Change
Used		-	-			
Created	Tonnes	0 to 1	0 to 1	↑ 0 to 1	↑ 0.8%	No significant change.
Contained In Product		-	-			
Release to Air	Tonnes	0 to 1	0 to 1	↑ 0 to 1	↑ 0.8%	No significant change.
Release to Water		-	-			
On-site Disposal		-	-			
Transferred for Disposal						

Transferred for Recycling	 	 	

	Unit	2018	2017	Change (Unit)	Change (%)	Rationale for Change
Used						
Created	Tonnes	0 to 1	1 to 10	↑ 0 to 1	↑ 0.8%	No significant change.
Contained In Product						
Release to Air	Tonnes	0 to 1	1 to 10	↑ 0 to 1	↑ 0.8%	No significant change.
Release to Water						
On-site Disposal						
Transferred for Disposal						
Transferred for Recycling						

3.5 Particulate Matter <=10 micrometers

4. Objectives

Chromium, Cobalt, Nickel, PM10, PM2.5:

Koch-Glitsch Canada LP prides itself on technological innovation in order to produce high quality products in an environmentally responsible manner. The objective of this plan is to document the options available to Koch-Glitsch Canada to reduce the creation of particulate matter and use of chromium, and nickel, where feasible and applicable, at the facility. Further, this plan will determine the technical and economic feasibility of each option to determine which, if any, are viable for implementation at this time. No options have been identified, and as part of the continuous improvement practices at the facility, technical advances will be monitored for new opportunities to reduce the creation of particulate matter or use of chromium, and nickel in the future.

5. Progress in Implementing Plan

5.1 This section does not apply since no feasible reduction options have been identified for implementation at this time.

For information on on-site releases from the facility, as well as disposal and off-site recycling information, please refer to National Pollutant Release Inventory's website: <u>http://www.ec.gc.ca/inrp-npri/.</u>

As of **28 May 2019**, I, <u>Michael McGuire</u>, certify that I have read the reports on the toxic substance reduction plans for the toxic substances referred to below and am familiar with their contents, and to my knowledge the information contained in the reports is factually accurate and the reports comply with the Toxics Reduction Act, 2009 and Ontario Regulation 455/09 (General) made under that Act.

Chromium Cobalt Nickel Particulate Matter <=2.5 micrometers Particulate Matter <=2.5 micrometers

Michael McGuire President Koch-Glitsch Canada LP